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Introduction to Exponential Functions 

You will need to remember the Rules for Exponents (from the Review Resources Repository) as you 

study your reading. Remember how to simplify expressions with fractional exponents and negative 

exponents. Review the rules! 

We’re ready to work with Exponential Functions.  The main difference between an exponential function 

and a polynomial (or algebraic) function is the location of the variable.   

 

 

 

Here are a few details to notice.   

1. We don’t use zero for the constant base of an exponential function. If we did and tried j(x)=0x, 

then what would happen if we tried to evaluate j(–2)? We would get 1/0 which is undefined! We 

can’t do that! 

2. We use only positive numbers for the constant base. If we didn’t restrict that, then we might 

write k(x)=( –4)x. What would happen when we try to evaluate k(1/2)? This would give us √–4  

which would be an imaginary result. We’re going to stay away from these, too. 

3. Also, we don’t use ‘1’ for the base. If we try m(x)=1x, then what is the range? No matter what 

the x-value we use, the y-value is always going to be ‘1.’ That means this function m(x) would 

reduce to m(x)=1 which is a constant polynomial function. 

 

Here is an example:  Given:  h(x)=3x,  

then h(2)=32=9,   

and  h(–1)=3–1=1/3 

And if you’re told that h(x)=27, that asks 3x=27, so would mean that x=3. 

Graphs of Exponential Functions 

All exponential graphs -- f(x)=ax  -- have the same y-intercept. Because to find the y-intercept, 

we use x=0 and f(0)=a0 =1. So (0,1) is the common y-intercept no matter what the 

base of the exponential function is. Notice the graphs in section 5.3 of your 

textbook. The only difference in them is the ‘sharpness’ of the curve. We’ll just work with the 

basic graph that looks something like this one.   

The domain of exponentials is (–, +); in other words all Real numbers can serve as exponents. The range 

of the “basic” exponential function is (0, +). The range is the output. And since we are only allowed to use 

positive number bases, we can only end up with positive results. There is no exponent that can turn a 

positive base into a zero nor into a negative result!! Thus, there are no x-intercepts on the graph. 

 

In a polynomial, the variable is the base and a constant is the exponent.  p(x) = x3    

In an exponential function, the variable is the exponent and a constant is the base.  f(x) = 3x. 
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Graphs of exponential functions can be transformed in the same way the polynomial graphs are.   

 Vertical shifts:  up=add after processing ; down= subtract after processing  

 Horizontal shifts:  left=add before processing ; right=subtract before processing 

 Flips:  over x-axis=multiply by –1 after processing; over y-axis=multiply by –1 before processing 

 Stretches:  taller=multiply by value greater than 1; wider=multiply by value between 0 & 1 

 

Here’s an example of using the transformation rules from Activity 3.5 in Learning Unit 3, to graph an 

exponential function. 

 

Graph:  f(x) = –23–x  .  

 

Think of 3–x as –x+3, so: 

f(x) = –2–x+3 

 

Factor the negative from the two terms in the 

exponent: 

f(x) = –2–(x–3)   

 

The graph will move three units to the right since 

three is subtracted before processing. 

 

 

 

 

 

The graph will reflect across the y-axis since we 

are multiplying by negative one before processing. 

 

 

 

 

Careful, now.   
 

What is the base of the exponent?   

It can’t be –2, since negative numbers are not 

allowed as bases of exponential function.   
 

The base of the exponent is 2.   

After the processing is done, the result is 

multiplied by –1. This will reflect the graph across 

the x-axis. 

 

 

By the way, IF the base of the exponent were –2, it would have to be written with parenthesis:  

(–2)x.  This, however, is the situation that we canNOT do. 
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So, the function  g(x)=4x   describes growth because the base is greater than 1. 

The function  h(x) = (¼)x  describes decay because the base is less than 1. 

 

Remember there is another way to write ¼.  We can also write it as 4–1, so h(x) could 

also be written:  h(x) = 4–x. 

 

In either format, h(x) would give the same outputs and have the same graph. 

 

Special Exponential Functions 

There are two special exponential functions we commonly use. 

1. Because our number system is based on 10, one useful exponential function is  t(x)=C10x. 

2. Another very useful exponential function has a base of "e." e is NOT a variable. It is a number which 

occurs in nature (like π). It is not a number any person thought up, rather it is a number scientists 

discovered as they studied growth and decay in the “natural” world. e is an irrational number 

approximately equal to  2.7182818.... (never–ending, non–repeating). Thus n(x)=Cex is called the 

“natural” exponential function. 

Exponential Growth and Decay 

The general exponential equation is  f(x)=ax  or  f(x)=Cax  where the C indicates there is some initial 

amount that will be increased or decreased by the repeated factor a. There are two ways to tell if an 

exponential function is describing “growth” or “decay.” If the base of the exponent is a fraction, the 

initial amount will decrease. That is if 0<a<1, the equation describes “decay” of the initial amount. 

 

 

 

 

  

 

Thus, the second way we can identify whether an exponential function describes growth or decay is to 

look at the exponent.  If the base is greater than 1, but the exponent is negative, it will still describe a 

“decay” of the initial amount. 
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Some Applications Explained: 

A = P(1+r/n)nt 

Compound Interest Formula.  “n” is the number of times the 

interest is compounded in a year (i.e. quarterly means n=4).  

“r” is the interest rate expressed in decimal form.   

“t” is the number of years the account is active.  

“P” is the principal, the amount you begin with.   

“A” is the amount in the account at the end of the term.  It 

includes the original principal and the interest.   

A = Pert 

Interest Compounded Continuously. When the rate is positive, 

the account will grow. (That’s the way investors hope their 

accounts will work!) 

y = Cax 

Exponential Growth. As long as the exponent is positive and the 

base is greater than 1, this formula expresses growth. The “C” is 

the initial amount of material present (beginning population, or 

beginning radioactivity, etc.) 

y = C(1/2)
x/k 

Half Life. When the base of the exponent is ½, half of the 

substance decays each year. “x” represents the number of years 

and “k” is the number of years until half of the substance has 

decayed.  So if x=k, the exponent is “1” and half of the substance 

is gone. If x<k, then not enough time has passed for the 

substance to be half gone. (i.e. If x=20 and k=60, then x/k=
1/3 in 

the exponent. So only 1/3 of the time has passed that would be 

necessary for half of the substance to decay. 
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